Local Properties of Triangular Graphs
نویسنده
چکیده
In the paper triangular graphs are discussed. The class of triangular graphs is of special interest as unifying basic features of complete graphs with trees and being used on many various occasions. They model processor networks in which local computations can be easily implemented. The main issue addressed in the paper is to characterize class of triangular graphs (defined globally) by local means. Namely, it is proved that any triangular graph can be constructed from a singleton by successive extensions with nodes having complete neighborhoods. Next, the proved theoretical properties are applied for designing some local algorithms: for elections a leader and for constructing spanning trees of triangular graphs. The fairness of these algorithms is proved, which means that any node can be elected and any spanning tree can be obtained due to application of these algorithms.
منابع مشابه
Distance-based topological indices of tensor product of graphs
Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...
متن کاملHamiltonian properties of triangular grid graphs
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearlyconvex hull of the Star of David. We extend this result to a wider...
متن کاملTwo New Classes of Hamiltonian Graphs
We prove that a triangular grid without local cuts is (almost) always Hamiltonian. This suggests an efficient scheme for rendering triangulated manifolds by graphics hardware. We also show that the Hamiltonian Cycle problem is NP-Complete for planar subcubic graphs of arbitrarily high girth. As a by-product we prove that there exist tri-Hamiltonian planar subcubic graphs of arbitrarily high gir...
متن کاملEdge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملVertex Equitable Labeling of Double Alternate Snake Graphs
Let G be a graph with p vertices and q edges and A = {0, 1, 2, . . . , [q/2]}. A vertex labeling f : V (G) → A induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. For a ∈ A, let vf (a) be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fundam. Inform.
دوره 79 شماره
صفحات -
تاریخ انتشار 2007